Neurobiology of Disease Dynamic Changes in Presynaptic and Axonal Transport Proteins Combined with Striatal Neuroinflammation Precede Dopaminergic Neuronal Loss in a Rat Model of AAV -Synucleinopathy
نویسندگان
چکیده
Little is known about key pathological events preceding overt neuronal degeneration in Parkinson’s disease (PD) and -synucleinopathy. Recombinant adeno-associated virus 2-mediated delivery of mutant (A53T) human -synuclein into the substantia nigra (SN) under a neuron-specific synapsin promoter resulted in protracted neurodegeneration with significant dopaminergic (DA) neuron loss by 17 weeks. As early as 4 weeks, there was an increase in a dopamine metabolite, DOPAC and histologically, DA axons in the striatum were dystrophic with degenerative bulbs. Before neuronal loss, significant changes were identified in levels of proteins relevant to synaptic transmission and axonal transport in the striatum and the SN. For example, striatal levels of rabphilin 3A and syntaxin were reduced. Levels of anterograde transport motor proteins (KIF1A, KIF1B, KIF2A, and KIF3A) were decreased in the striatum, whereas retrograde motor proteins (dynein, dynamitin, and dynactin1) were increased. In contrast to reduced levels in the striatum, KIF1A and KIF2A levels were elevated in the SN. There were dramatic changes in cytoskeletal protein levels, with actin levels increased and -/ -tubulin levels reduced. In addition to these alterations, a neuroinflammatory response was observed at 8 weeks in the striatum, but not in the SN, demonstrated by increased levels of Iba-1, activated microglia and increased levels of proinflammatory cytokines, including IL-1 , IFNand TNF. These results demonstrate that changes in proteins relevant to synaptic transmission and axonal transport coupled with neuroinflammation, precede -synuclein-mediated neuronal death. These findings can provide ideas for antecedent biomarkers and presymptomatic interventions in PD.
منابع مشابه
A study on striatal local electrical potential changes in an animal model of Parkinson's disease
Parkinson’s disease (PD) is a neurodegenerative disorder that does not develop spontaneously in some animal species. PD can be induced experimentally in some laboratory animals including mouse, rat and horse. Globus pallidus (GP) and substantia nigra pars compacta (SNc) are damaged in patients with PD. The hallmark of PD is a progressive impaired control of movement, an alteration of autonomic ...
متن کاملA study on striatal local electrical potential changes in an animal model of Parkinson's disease
Parkinson’s disease (PD) is a neurodegenerative disorder that does not develop spontaneously in some animal species. PD can be induced experimentally in some laboratory animals including mouse, rat and horse. Globus pallidus (GP) and substantia nigra pars compacta (SNc) are damaged in patients with PD. The hallmark of PD is a progressive impaired control of movement, an alteration of autonomic ...
متن کاملThe Toll-like receptor-3 agonist polyinosinic:polycytidylic acid triggers nigrostriatal dopaminergic degeneration.
In Parkinson's disease (PD), loss of striatal dopaminergic (DA) terminals and degeneration of DA neurons in the substantia nigra (SN) are associated with glial reactions. Such inflammatory processes are commonly considered an epiphenomenon of neuronal degeneration. However, there is increasing recognition of the role of neuroinflammation as an initiation factor of DA neuron degeneration. To inv...
متن کاملNovel AAV-Based Rat Model of Forebrain Synucleinopathy Shows Extensive Pathologies and Progressive Loss of Cholinergic Interneurons
Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parki...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کامل